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Tools for Protein Informatics

sequence and structure comparison
multiple alignments

phylogenetic tree construction
composition/pl/mass analysis
motif/pattern identification

2° structure prediction/threading

TMD prediction/hydrophobicity analysis
homology modeling

visualization




Primary Web Resources

European Molecular Biology Laboratory, Germany
http:// www.embl-heidelberg.de

ExPASyY Molecular Biology Server, Swiss Institute of
Bioinformatics, Switzerland

http://ca.expasy.org/
National Center for Biotechnology Information, USA

http:// www.ncbi.nim.nih.gov

http://www3.ncbi.nlm.nih.gov/Entrez/

San Diego Supercomputer Center, USA

http:// www.sdsc.edu

Other valuable on-line sites

Entrez

http://www3.ncbi.nlm.nih.gov/Entrez/

Genome mapping and sequencing

Human genome project:
http://www3.ncbi.nlm.nih.gov/genome/guide/

Model organisms:
http://www.ncbi.nlm.nih.gov/Entrez/Genome/org.html

Whole genome analysis:
http://www.ncbi.nim.nih.gov/COG/

Analysis of polymorphisms:
http://www.ncbi.nlm.nih.gov/SNP/




Functional genomics:

— Online Mendelian Inheritance in Man (OMIM):
http://www.ncbi.nlm.nih.gov/Omim/

Target identification in drug design, agriculture,
biocatalysis:

http://www.labmed.umn.edu/umbbd/index.html
Differential digital display (Cancer genome anatomy
project):

http://www.ncbi.nim.nih.gov/ncicgap/

Array technologies:
http://cmgm.stanford.edu/pbrown/

Metabolic pathways:

http://www.ecocyc.org/
http://www.genome.ad.jp/kegg/

Primary databases for 3D structure
classification/information

Entrez

http://www3.ncbi.nlm.nih.gov/Entrez/

Protein Data Bank (PDB)

http://www.rcsb.org/pdb/

Structural Classification of Proteins (SCOP)

http://scop.mrc-Imb.cam.ac.uk/scop/index.html

CATH: Protein Structure Classification

http://www.biochem.ucl.ac.uk/bsm/cath_new/index.html




Protein vs. nucleic acid sequence
analysis?

Protein sequence analysis provides greater
specificity and less noise than nucleic acid analysis
for identification of similarities because of the
inherent differences in the message content of
nucleic acid and amino acid codes

Due in part to 4-letter vs. 20-letter code, degeneracy
of codon messaging

But some searches must be done at the nucleotide
level...

Some information properties of
messages for sequence analysis

A sequence can be described in terms of the # of bits needed to
specify its message, where one bit distinguishes between two
equally likely things.
Ex: Where base frequencies are equal, one bit distinguishes a purine from a
pyrimidine, two bits are required to uniquely specify a single base among A, T,
C,G.
Information content of a random message can be calculated
from the set of relevant symbols’ frequencies:

n
| =2 Pi logzP

=1

where Pi is the probability of finding the symbol i at any position




» Using a standard measure for overall amino acid frequencies
gives the information content of a random protein sequence as
4.19 bits/residue.

Thus, for an average size protein domain (150 residues), the
message length is ~630 bits and the probability that 2 random
sequences would specify the same message is 25 (101%),

. Database searching for protein similarities is doable, even for fairly
short sequences

BUT, for a transcription binding site of 8-10 bp, the odds of 2
random sequences arriving at the same message is 107°.

. Database searching for regulatory elements does not work well as
databases get larger

Introduction to Protein
Sequence Analysis

» Database searching/pairwise alignments

» Pattern searching and motif analysis

» Multiple alignments and Evaluation using
Family/Superfamily Concepts




Applications

tracing ancestral connections
deduction/inference of function
understanding enzyme mechanisms
clustering of families, superfamilies

structural analysis of receptors, molecules involved in
cell signaling

identification of molecular surfaces in protein-protein,
protein-DNA interactions

metabolic computing/comparative genome analysis
guidance for functional genomics, protein engineering

References: Database searching

Altschul et al., "Issues in searching molecular sequence
databases"

Pearson, "Comparison of methods for searching protein
sequence databases"

Altschul, "Amino acid substitution matrices from an information
theoretic perspective"”

Pearson & Lipman, (the original FASTA paper) "Improved tools
for biological sequence comparison”

Altschul et al., (the original Blast paper) "Basic local alignment
search tool"

Henikoff & Henikoff, "Amino acid substitution matrices from
protein blocks"

Altschul et al., "Gapped Blast and PSI-Blast: A new generation
of protein database programs”




The underlying assumption used in
functional inference...

Sequence
Conservation

I—) Structure

Conservation

I—) Function

Conservation

...requires comparison of sequences

» The most fundamental operation in protein
informatics is finding the best alignment between a
guery sequence and one or more additional
sequences

Once candidate homologs have been identified, they
can be evaluated using statistical methods and
structural and biological information

» The correspondence between two aligned sequences
can be expressed in a similarity score and/or viewed
graphically, e.g., dot plots, alignments, motifs or
SEUGCIOE




Formalizing the Problem

Given: two sequences that you want to align

Goal: find the best alignment that can be
obtained by sliding one sequence along the
other

Requirements:

— a scheme for evaluating matches/mis-matches
between any two characters

— a score for insertions/deletions
— a method for optimization of the total score

— a method for evaluating the significance of the
alignment

» Dot matrix plots: a simple description of alignment
operations illustrating types of relationships between a
sequence pair




The signal-to-noise ratio can be improved using
filtering techniques designed to minimize the
composition-dependent background

Example of common filters: over-lapping, fixed-length
"windows" for sequence comparison

To be counted, a comparison must achieve a
minimum threshold score summed over the window,
derived empirically or from a statistical or evolutionary
model of sequence similarity

The window size and minimum threshold score (often
termed "stringency") at which the score is counted can
be user-defined

Seql = SEQUENCEHOMOLOG
Seq2 = SEQUENCEANALOG
Window = 7, Stringency = 42% (3/7 matches)

aG (7/'7 nat ches)

(O/'7 nat ches)

(7/'7 nat ches)

(3/7 nat ches)




SEQUENCEHOMOL OG

S
E
Q
U
E
N
C
=
A
N
A
L

O
G

SEQUENCEHOMOL OG

QOrr»Z2>mMmOZMCOMW0n

Stringency = 1/7
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Window = 30; Stringency = 2

Window = 30; Stringency = 11

11



Scoring Systems

The degree of match between two letters can be
represented in a matrix

Changing the matrix can change the alignment
- Simplest: Identity (unitary) matrix

- Better: Definitions of similarity based on inferences about
chemical or biological properties

- Examples: PAM, Blosum, Gonnet matrices

The score should have the form: p,, /q,d,, where
P, IS the probability that residue a is substituted by
residue b, and g, and q, are the background
probabilities for residue a and b respectively.

Handling gaps remains an incompletely solved
problem...

PAM units
*PAM (point accepted mutation) is a unit of evolutionary
distance between 2 amino acid sequences*

*1 PAM = 1 accepted point-mutation (no insertions or
deletions) event per 100 aa

*200 PAM = 200 point mutations/100 aa (assumes
mutations occur multiple times at any given position)

2 sequences diverged by 200 PAM = 25% identity

**PAM is also sometimes defined as "percent accepted mutation”




PAM matrices

Substitution matrices used to reflect expected evolutionary
change (by point mutations only)

Given 2 sequences i,j, for any specific pair of residues A, A,
the (i,j) entry in the PAM n matrix reflects the frequency at
which A, is expected to replace A in 2 sequences n PAM units
diverged, i.e., use PAM120 matrix to compare 2 protein
sequences diverged by 120 PAM units

Score should be in the form
p
PP

Usually presented in log-odds form, i.e., probability values are
given in logarithmic form

Derivation of ideal PAM matrices*

» Using many sets of 2 aligned sequences, for each
amino acid pair Ai, Aj, count the # of times Ai aligns
with Aj and divide that number by the total # of amino
acid pairs in all of the alignments, resulting in the
frequency, 1(i,))

» Let fi and fj, respectively, denote the frequencies at
which Ai and Aj appear in the sets of sequences

* Then the (i,j) entry for the ideal PAM matrix is

109
8 T

*adapted from Algorithms on Strings, Trees, and Sequences, Dan Gusfield, 1997




Actual Derivation of PAM matrices

Originally compiled from a group of sequences

>85%identical that could be unambiguously aligned
(M.O.Dayhoff, R.M. Schwartz, B.C. Orcultt, in Atlas of Protein Sequence and Structure,
5:345-352 (1978)

These sequences were close in length and the few
insertions/deletions could be placed correctly

A PAM-1 matrix was calculated from these data

Assumes more distantly related proteins can be
described by a series of uncorrelated mutations
consistent with the PAM-1 matrix such that a PAM-N
matrix is derived by multiplying PAM-1 by itself N
times

Guidelines for using PAM matrices

The relative entropy H of PAM matrices
(from Table 1)
PAM distance H (bits) Min. signif
Iength (30 bits)

Ranges of local alignment lengths for which
various PAM matrices are appropriate

(from Table 3)

PAM 93% efficiency range for database
matrix searching (30 bits

9-21
19:50

from Altschul, "Amino acid substitution matrices from an information theoretic perspective"




PAM250 amino acid substitution matrix*

CEEEPPPPEEEPEEPTCRPP]

*Version in use by GCG9 B,Z are average values for D/N and E/Q, respectively

Issues with PAM matrices

» Actually work quite well, with PAM-250 still used
routinely for finding distant homologs

* BUT there are some clear problems with the model...

— PAM model assumes all residues are equally mutable

— Model devised using the most mutable positions rather than
the most conserved positions, i.e., those that reflect
chemical and structural properties of importance

— Derived from a biased set of sequences: small globular
proteins available in the database in 1978

15



BLOSUM (Blocks Substitution)
Matrices

e Derived from the BLOCKS database, which, in turn is

derived from the PROSITE library

http://blocks.fhcre.org/blocks/, http://www.expasy.ch/prosite/

BLOCKS generated from multiply aligned sequence
segments without gaps clustered at various similarity
thresholds and corrected to avoid sampling bias

Derived from data representing highly conserved
sequence segments from divergent proteins rather
than data based on very similar sequences (as with
PAM matrices)

Derivation of BLOSUM matrices

Many sequences from aligned families are used to
generate the matrices

Sequences identical at >X% are eliminated to avoid
bias from proteins over-represented in the database

Specific matrices refer to these clustering cut-offs,
l.e., BLOSUMBG2 reflects observed substitutions
between segments <62% identical

In analogy to PAM matrices, a log-odds matrix is
calculated from the frequencies A; of observing
residue i in one cluster aligned against residue j in
another cluster

16



BLOSUM vs. PAM Matrices

BLLJOOSUM matrices have replaced PAM matrices as the
default matrices at many database searching sites (Blast,
FASTA servers)

Both PAM-120 and BLOSUM®G62 work best for moderately
diverged proteins and may miss similarities outside their
optimum performance windows

PAM provides the only easily accessible alternative for
short sequences (no appropriate version of Blosum
available)

Best solution is to provide a range of scoring systems,
which is currently the practice for most primary servers

Setting appropriate gap penalties can have a large effect
on matrix performance

Optimizing the Score: Brute-force
Approach

» Considering two sequences, both of length N:

- If gaps or local alignments are not considered, there is only one
optimal solution

Equal length w/o gap

N

- The computational time required to compute the optimal
alignment = N2




- But when gaps or local alignments are considered, things get
complicated because we have to repeat the calculation 2N
times to allow for the possibility of gaps at each position of
each sequence

Requires time proportional to N4N

Even when nonsensical alignments are removed (aligning gaps
with gaps), for N = 300 residues, ~1088 comparisons are
required

Extreme case: seq 1 aligns with gaps of seq 2

Optimizing the Score: Dynamic
Programming

* Requires computational time proportional to N2

» Original version often termed the “Needleman-
Wunsch” algorithm
(Needleman, S.B. and Wunsch, C.D. J. Mol. Biol. 48 (1970) 443-453)

» Addresses the problem for GLOBAL alignments; still
has to deal with gaps

18



Next step forward: local alignments

Implemented by Smith & Waterman

(Smith & Waterman. J. Mol. Biol. 147 (1981) 195-197)

Finds the two “most similar” segments to generate an
alignment from parts of the two sequences

Modifications of dynamic programming algorithm:

—The scoring system must include negative scores for
mismatches

—0 = the minimum score recorded in the score matrix

—The end of the optimal path can be anywhere in the matrix,
not just in the last row or column

Statistical Significance

* A good way to determine if an alignment score has
statistical meaning is to compare it with the score
generated from the alignment of two random
sequences

* A model of ‘random’ sequences is needed. The
simplest model chooses the amino acid residues in a
sequence independently, with background
probabilities

(Karlin & Altschul (1990) Proc. Natl. Acad. Sci. USA, 87 (1990) 2264-2268)
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A most important caveat...

» For database searches, the ONLY criteria available to
judge the likelihood of a structural or evolutionary
relationship between 2 sequences is an estimate of
statistical significance

For a medium-sized protein using default parameters
(Blosum62, E = 10), the cut-off for statistical
significance is P =10-7-10°

( for the relationship between E and P, see
http://www.ncbi.nim.nih.gov/BLAST/tutorial/Altschul-1.html)

Statistical significance and biological significance are
NOT necessarily the same

20



Query= / phosphonat ase/ phosSt. gcg (255 letters) (10/20/99/pch)
Dat abase: /nol/seq/blast/db/ swi ssprot 78, 725 sequences; 28, 368, 147 total letters

Score E
Sequences producing significant alignnents: (bits) Value

sp| (06995 PGVB_BACSU Begi n: 93 4 PUTATI VE BETA- PHOSPHOGLUCOMUTASE ( BETA- 38 0.020
sp| P31467| YI EH_ECOLI Begi n: 180 HYPOTHETI CAL 24.7 KD PROTEIN | N TNAB-BGLB | .. 10
sp| OL4165|] YDX1_SCHPO Begi n: 34 End: 201 HYPOTHETI CAL 27.1 KD PROTEI N C4C5.01 IN CHR
sp| P41277| GPP1_YEAST Begi n: 133 End: 200 (DL)- GLYCEROL- 3- PHOSPHATASE 1

sp| @9565| DYHB_CHLRE Begi n: 3911 End: 4032 DYNEI N BETA CHAI N, FLAGELLAR OUTER ARM

sp| P77625| YFBT_ECOLI Begi n: 143 End: 187 HYPOTHETI CAL 23.7 KD PROTEI N I N LRHA-ACKA I.. .
sp| Q40297| FOPA_MACPY Begi n: 146 End: 176 FUCOXANTH N- CHLCROPHYLL A-C BI NDI NG PROTEIN. . .
sp| P GPHP_ALCEU Begi n: 94 End: 188 PHOSPHOGLYCOLATE PHOSPHATASE, PLASM D ( PGP)

sp| Q40296] FCPB_MACPY Begi n: 146 End: 176 FUCOXANTH N- CHLCROPHYLL A-C BI NDI NG PROTEIN. . .
sp| P52183] ANNU_SCHAM Begi n: 119 End: 168 ANNULIN ( PROTEI N- GLUTAM NE GAMVA- GLUTAMYLTR . .
sp| P40106| GPP2_YEAST Begi n: 133 End: 200 (DL)- GLYCEROL- 3- PHOSPHATASE 2

sp| P37934| MAY3_SCHCO Begi n: 435 End: 552 MATI NG TYPE PROTEI N A- ALPHA Y3

sp| Q06219] MURE_MYCTU Begi n: 255 End: 371 UDP- N- ACETYLMURAMOYLALANYL- D- GLUTAVATE- - 2, 6. . .
sp| PO8419| EL2_PI G Begin: 182 End: 245 ELASTASE 2 PRECURSO

sp| QL1034| YO7S_MYCTU Begi n: 163 End: 218 HYPOTHETI CAL 69.5 KD PROTEI N CY02B10. 28C

sp| PO0577] RPOC_ECOLI Begi n: 1290 End: 1401 DNA- DI RECTED RNA PCLYMERASE BETA' CHAIN (T
sp| P32662| GPH_ECOLI Begin: 20 End: 49 PHOSPHOGLYCOLATE PHOSPHATASE ( PGP)

sp| P32662| GPH_ECCLI Begin: 116 End: 224 PHOSPHOGLYCOLATE PHOSPHATASE (PGP)

sp| P32282| RIRL_BPT4 Begin: 239 End: 266 R BONUCLECSI DE- DI PHOSPHATE REDUCTASE ALPHA C.. .
sp| P17346] LEC2_MEGRO Begi n: 36 End: 121 LECTIN BRA-2

sp| P54947] YXEH_BACSU Begi n: 24 End: 51 HYPOTHETI CAL 30.2 KD PROTEIN I N | DH DECR I N..
sp| P77366] PQVB_ECOLI Begi n: 95 End: 190 PUTATI VE BETA- PHOSPHOGLUCOVMUTASE ( BETA-

sp| P30139] TH G_ECOLI Begi n: 43 End: 79 THI G PROTEI N

sp| P95649] CBBY_RHOSH Begi n: 96 End: 189 CBBY PROTEI N

sp| 43154 GSHC_SPI OL Begi n: 228 End: 327 GLUTATHI ONE REDUCTASE, CHLOROPLAST PRECURSO.. .
sp| P34132| NT6A_HUVAN Begi n: 191 End: 215 NEUROTROPHIN-6 ALPHA (NT-6 ALPHA)

sp| P34134| NT6G_HUVAN Begi n: 115 End: 144 NEUROTROPHI N-6 GAMMA (NT-6 GAMVA)

sp| P95650] GPH_RHCSH Begin: 48 End: 114 PHOSPHOGLYCOLATE PHOSPHATASE ( PGP)

Database searching

The first and most common operation in protein
informatics...and the only way to access the
information in large databases

Primary tool for inference of homologous structure and
function

Improved algorithms to handle large databases
quickly

Provides an estimate of statistical significance
Generates alignments

Definitions of similarity can be tuned using different
scoring matrices and algorithm-specific parameters




BLAST and FASTA

The rigorous Needleman-Wunsch and Smith-Waterman
algorithms are too slow for large database searches

There are two major heuristic algorithms (BLAST and
FASTA) to speed up the searching

However, these compromise speed and sensitivity and
neither of them guarantees to find the best alignment

BUT, these are the primary search engines used by the
majority of scientists today and their excellent
performance justifies such use

NOTE: Pairwise comparisons limit information content

FASTA suite

» "Fast" search algorithm generates global alignments,
allows gaps

* Good documentation (Pearson)
http://www2.ebi.ac.uk/fasta3/help.html; http://fasta.bioch.virginia.edu/

» Extensively updated since first release
- more rigorous statistical analysis has been added
- multiple variants available
- FASTAS is the current implementation

22



BLAST suite

Original "fast" search algorithm generates local
alignments without gaps (Blast 1.4)

Newer versions (Blast 2.0x) accommodates gaps

Documentation

— Manual: http:/Avww.ncbi.nim.nih.gov/BLAST/blast_help.html

— FACS:  nitp:/mww.nchi.nim.nih.gov/BLAST/blast_FAQs.html

— Tutorial: http:mmw.ncbi.nim.nih.gov/BLAST /tutorial/Altschul-1.html

Other subtypes recently available for aligning 2
sequences, motif searching, domain matching, short
sequences

BLAST flavors

blastp compares an amino acid query sequence against a
protein sequence database

blastn compares a nucleotide query sequence against a
nucleotide sequence database

blastx compares the six-frame conceptual translation
products of a nucleotide query sequence (both strands)
against a protein sequence database

tblastn compares a protein query sequence against a
nucleotide sequence database dynamically translated in
all six reading frames (both strands)

tblastx compares the six-frame translations of a nucleotide
query sequence against the six-frame translations of a
nucleotide sequence database

23



Psi-Blast: Extending our reach...

* Generalizes BLAST algorithm to use a position-
specific score matrix in place of a query sequence and
associated substitution matrix for searching the
databases

Position-specific score matrix is generated from the
output of an initial Gapped Blast search, i.e., uses a
profile or motif defined in the initial Blast search in
place of a single query sequence and matrix for
subsequent searches of the database

Results in a database search tuned to the specific
sequence characteristics representative of the
sequence set of interest

Steps in a Psi-Blast search*

Constructs a multiple alignment from a Gapped Blast
search and generates a profile from any significant
local alignments found

The profile is compared to the protein database and
PSI-BLAST estimates the statistical significance of
the local alignments found, using "significant” hits to
extend the profile for the next round

PSI-BLAST iterates step 2 an arbitrary number of
times or until convergence

*Adapted from the PSI-BLAST tutorial at NCBI




PSI-BLAST information at NCBI

Access
http://www.ncbi.nlm.nih.gov/BLAST/

Tutorial
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-2.html

A short explanation of PSI-BLAST statistics

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-3.html

See also:

Park J; Karplus K; Barrett C; Hughey R; Haussler D; Hubbard T; Chothia C. "Sequence
comparisons using multiple sequences detect three times as many remote homologs as
pairwise methods." (1998) J. Mol. Biol., 284:1201-10

Beyond database searching: How do we turn
our results into knowledge?

25



Some Basic Principles of Molecular
Evolution

Evaluation using Multiple Alignments
Finding and Analyzing Motifs

New Directions in Bioinformatics

Molecular Evolution

Highly relevant but we only have time to
mention some
very basic issues

26



References

Saier, M.H. Jr. "Phylogenetic approaches to the identification and
characterization of protein families and superfamilies”

Labedan, B. & Riley, M. "Gene products of E.coli: Sequence
comparisons and common ancestries”

Green, P. et al. "Ancient conserved regions in new gene sequences
and the protein databases”

Murzin, A.G. "How far divergent evolution goes in proteins”
Textbooks:
Fundamentals of Molecular Evolution, Li & Graur, Sinauer

Associates, 2nd Ed. (1999)

Molecular Systematics, D.M. Hillis & C. Moritz, Eds., Sinauer
Associates (1990)

Web Resources

o Useful Lists

http://www.mcb.harvard.edu/BioLinks/Evolution.html
http://darwin.eeb.uconn.edu/molecular-evolution.html

» Tree of Life site
http://phylogeny.arizona.edu/tree/phylogeny.html

* A protocol to get you started
http://www.infobiogen.fr/docs/MAcours/phyloJe€NYy. html

27



Tree (Network) Nomenclature

& N
< * \/‘eBranch

* Root Node
/ Terminal nodes

® Internal nodes

Definitions

Homology: Sharing a common ancestor, may have
similar or dissimilar functions

Analogy: Performing a common function but no
common ancestry
Convergence: Performing the same function, having

similar structural characteristics, but do not share a
common ancestor

Paralogy: Sequence similarity between the
descendants of a duplicated ancestral gene

Orthology: Sequence similarity as a consequence of
a speciation event

28



Duplication

paralogous

/1
@ Y oo
_t |

orthologous

Important principles

Evolutionary history is accessed only through
contemporary species and molecules

The basic models for substitution are generally robust
for sequences 80% identical (nucleotide level), e.g.,
not highly diverged

General assumptions of the models
Changes in different copies of genes are independent
Changes at each site are independent
All sites change at the same rate

All bases occur at equal frequencies (corrected in later
models to come a little closer to reality)

29



A $\>A
C A C—A

12 mutations T—> C—A T
lated & °
accumulate A—G AT

C—=G C—=G
G—=A

T T~ — T

A A—-T—=A

Differences
detected at only
3 sites

A A
C-A
AT
G G
G-T
G G
A A
T T
A A

 Different domains within a single protein
evolve at different rates

B-chain C-peptide A-chain
I N

ﬁ r = 0.97 x 10-9/sitelyear
e

r = 0.13 x 10°/site/year

Mature insulin
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Evaluation using Multiple Alignments

References
on multiple alignment tools

McClure, "Comparative analysis of multiple protein sequence analysis
methods"

Thompson et al., "ClustalW: Improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice"

(MSA) Lipman et al., "A tool for multiple sequence alignment"
Notredame & Higgins, "SAGA: Sequence alignment by genetic algorithm"

(PIMA) Smith & Smith "Automatic generation of primary sequence patterns
from sets of related protein sequences”

See also:

(MACAW) Schuler, G.D., Altschul, S.F., Lipman, D.J. (1991) "A workbench
for multiple alignment construction and analysis," Proteins 9, 180-90

(PILEUP) Feng, D.F. & Doolittle, R.F. "Progressive sequence alignment as a
prerequisite to correct phylogenetic trees” (1987) J. Mol. Evol. 25, 351-60
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Evaluation of sequence relationships
using multiple alignments

Screening for membership in a family/superfamily

Identification of conserved elements important to
function

Distinguishing global vs. local patterns of similarity
characteristic of the structural scaffold

Determination of the level and sites of variability
across the members of subgroups/families/
superfamilies

» Multiple alignments are more informative than pairwise
comparisons

BLASTP 1.4.9

Query= TITLE: URF
(269 letters)
Dat abase: Non-r edundant Sw ssProt sequences
49, 825 sequences; 17,390,645 total letters.

Snal | est
Sum
Pr obabi | .

sp| P24162| ENOYL- COA HYDRATASE HOMOLOG ( ORF257). .. .le-31
sp| P34559| PROBABLE ENOYL- COA HYDRATASE, M TOCH. .. .2e-29
sp| P14604| ENOYL- COA HYDRATASE, M TOCHONDRI AL P. .. .le-28
sp| P30084| ENOYL- COA HYDRATASE, M TOCHONDRI AL P. .. . 3e-24
sp| P23966| NAPHTHOATE SYNTHASE ( DI HYDROXYNAPHTH. . . .3e-21
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BLASTP 1.4.9

Query= TITLE Urf
(269 letters)
Dat abase: Non-r edundant Sw ssProt sequences
49, 825 sequences; 17,390,645 total letters.

Snal | est
Sum
Pr obabi | .

sp| P24162| ENOYL- COA HYDRATASE HOMOLOG ( ORF257). . . .le-31
sp| P34559| PROBABLE ENOYL- COA HYDRATASE, M TOCH. . . . 2e-29
sp| P14604| ENOYL- COA HYDRATASE, M TOCHONDRI AL P. . . . le-28
sp| P30084| ENOYL- COA HYDRATASE, M TOCHONDRI AL P. . . . 3e-24
sp| P23966| NAPHTHOATE SYNTHASE ( DI HYDROXYNAPHTH. . . .3e-21

>sp| P24162| ECHH RHOCA ENOYL- COA HYDRATASE HOMOLOG ( ORF257). >pir| | S19026
enoyl - CoA hydratase honol og - Rhodobacter capsul atus >gi| 45984
(X60194) enoyl - CoA hydratase honol ogue [Rhodobacter capsul at us]
Length = 257

Score = 207 (96.1 hits), Expect = 6.1e-31, SumP(3) = 6. le-31
I dentities = 51/137 (37%, Positives = 71/137 (51%

Query: 89 VHOM HKI | RVKRPVLAAI NGVAAGGGLG SLASDMVAI CADSAKFVCAWHTI G GNDTAT 148
+ o+ PVLAATNG AAG G ++LAtD+ | ASAF+ A+ |G+ D
Shj ct: 83 YEPLLQAI YSCPLPVLAAVNGAAAGAGANLALAADWI AAGSAAFMQAFTRI GLMPDAGG 142

Query: 149 SYSLAR VGVRRAMELM_TNRTLYPEEAKDWGLVSRVYPKDEFREVAVKVARELAAAPTH 208
+ L RVGMRAM+ L + EEA G+ P +F A LA P+
Shjct: 143 TWALPRQVGVARAVGVALFAEKI GAEEAARMGLI WEAVPDVDFEHHWRARAAHLARGPSA 202

Query: 209 LNVMAKERFHAGAWMNPY 225
K+ FHAG NP+
Shjct: 203 AFAAVKKAFHAGLSNPL 219
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4-Chlorobenzoate Dehalogenase

Enoyl-CoA Hydratase

H,0
Ncoh —>—» R

« A multiple alignment distinguishes the
dehalogenase from the enoyl Co-A hydratase

family

Dehalogenases

Enoyl CoA
Hydratases

MAI CADS
LAVCTDR

[ ] 0
VCAWHTI @I GNDTAT
LPAWMSI 8l ANDASS

1 YAGEK
I YAGEK
FI ITASET
VVVAGEN

GQPEI LL@TIPGAGG
GQPEI NI @TI/PGAGG
GLPEI TL@VIPGMGG
GLPEI TL@I MPGAGG




Multiple alignments provide more
information than pairwise alignments

» Useful to confirm distant relationships

* Provides a context for interpreting patterns of
similarity and difference

"Speciation" over alignment space helps to connect
and confirm widely degenerate motifs

Query= /phosphonatase/phosBc.gcg (302 letters)

Database: swissprot
77,273 sequences; 27,815,109 total letters.
Smallest
Sum
Probability
Sequences producing High-scoring Segment Pairs: P(N) N

sp|P77247|YNIC ECOLI HYPOTHETICAL 24.3 KD PROTEIN IN PFKB... .2e-05
sp|067359 |GPH_AQUAE PHOSPHOGLYCOLATE PHOSPHATASE (PGP) .00030
sp|006995|PGMB_BACSU PUTATIVE BETA-PHOSPHOGLUCOMUTASE (BE... .0039
sp|P31467|YIEH ECOLI HYPOTHETICAL 24.7 KD PROTEIN IN TNAB... .0082
sp|P44755|GPH_HAEIN PHOSPHOGLYCOLATE PHOSPHATASE (PGP) .011
sp|P54607 | YHCW_BACSU HYPOTHETICAL 24.7 KD PROTEIN IN CSPB... .030
sp|P32662|GPH_ECOLI PHOSPHOGLYCOLATE PHOSPHATASE (PGP) .067

35



~ 21% identical

Phosphon

PGPhos ALAEE%SAPF
Phosphon EI FHK VAI

PGPhos RVLAARAP
Phosphon EMPRI AS|EIWN

PGPhos TSVY
Phosphon FAI L

PGPhos ESLOWNKPVSAS
Phosphon ST - - -

PGPhos AIIGGESL]QRK

Phosphon FLVTPDDVP

PGPhos EEVVLYVGDS
Phosphon MNHMI KIVGDT

PGPhos YRHAPV- - H
Phosphon SSELGLTEEE

10

*
LCTVVFDKTCT|LTEG
VKVVVFDKTCT|I THC

Cat+ATPase. A ATTI GSDKTCTLTTA
uf.N KVAI VIFD SACT|LVKI

Qr+ATPase. Eo
Qr+ATPase. b

PhosSer Phos. Hs ACAVCFDVLST|VI RE
2-D06-PPhos. & VCLCLFDLCCT|IVST
OL-Gy-3-Phos. & I NAALFDVELCT|II 1S
Phosphon. Pa LCAAI|LDVACT|VVCF
Phosphon. & | HAVI|LD VACTTVCF

HSAPDI HA NK
DYGCFAPL EVIFM

I EITGFI - - NGVPVLI Q
TIAE[E

ARKP LLKI DHVIRVT

DAHAELQGRF MAHADP
E

RVF

QLPTEADI QE

QI LSLF---G
EMMDI VAKEAA

APLRAT
WMSY KN

EFE

kHELF--
LIQGYKP
ME|LIGVY P

EV AATAEL RFALFTE
VSIDMKE GRNAGMWT VGVI L
LPHHGLFSHHDELQDLLRRL
VENMDSVELREKI EVVRNRF

151

*
VI ACVLPCCKAEAI KFL
VFAEVLPSKKVAKVKGL
VNARSSPNC|KHTLVRLL
-- - AHCEL|KRCLI RNL
TAE- SCCKC|KVI KLLKE
| TCFCVKNC|IKRACPECYS
| TANCVKGC|KRFPEPYL
ATCEV- PNCRRVPACAL
ATCCLAACCIRRCPVNAL

176

*
ANVC|DCI NCAPAL
ANVC|D|CI NCSPAL
AVTC|D|CTNCAPAL
| NVC|D CANCVPAN
I N C|DCATCNEAC
VVFE|DAPVCI KAC
VVFE|DAPACI AAC
VKVEC|D|TVPCI LEC
VKVC|DAAPCI SEC

Phosphon. Bc [ EAVIFDVACTTVLY
Phos@ycol Phos. R~ NPGVVEDLLCGTLVHS

TPCCV- PACRPYPVNSY
| CCESLPCRKPCPAPLA

[ KVC D TVSCNKEC
LYVC D SEVCAATA

NernbomIGDP  VCALLLDNCCVNAEV
B-PhosGucoMt. Ll FKAVLFDLECVITECT
Hl oAci dDehal . PspYL | KCI AFDLYCT|LFCV
NernbonEpoxHyd. 5 LRAAVFDLCCVLALP
Enol asePhos. ko I RAIVTDI ECT|TSCI

LECCPP- - - [KRSPEPI L
AEVAAS- - - |KRAPCIFI
LSVEPVQVY|KRENRVYE
| ESCQVCENV|KREPGI YK
FC- - TLVGAKREAGSYR

AMVC[DITVECEI T AC
| CLE|D|SCACI CAl
LFVS|S/NAVCATCA
VFLEC|DI CANLKPA
LFLS|D/I FCELCAA
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QurHATPase. Ec
QuHATPase. Hs
CattATPase. A
uf.M

PhosSer Phos. B
2-D0 6-Prhos.
O-Qy-3-Phos. &
Phosphon. Pa
Phosphon. &

10

*
LCTVVFDKTCTLTEC
VKVVVFDKTCT|I THC
ATTI GSDKTCTLTTA
KVAI VIFD SACT|LVKI
ACAVCFDVLST|VI RE
VCLCLFDLCCT/I VST
I NAALFDVECCTIIIIS
LCAAIILDVACT|VVCF
| HAVIILD VACTTVCF

151

*
VI ACVLPCC|KAEAI KFL
VFAEVLPSFKVAKVKCL
VNARSSPNC|KHTLVRLL
E-- - AHCEL|KRCLI RAL
TAE- SCCKC|KVI KLLKE
I TEFCVKNGIKRCPECYS
| TANCVKGC|KRFPEPYL
ATCEV- PNCIRRVPACAL
ATCCLAACCIRRACPVNAL

176

*
ANVC|D CI NCAPAL
ANVC|D CI NCSPAL
AVTC|DCTNCAPAL
| NVC|D/CANCVPAN
I N C|DCATCNEAC
VVFE|DAPVCI KAC
VVFE|DAPACI AAC
VKVC|D|TVPCI LEC
VKVC|DAAPCI SEC

Phosphon. Bc
Phos@ ycol Phos. Rs

I EAVIFDVACTTVLCY
MNPCVVEDLCCETLVHS

TPCCV- PACRPYPVNSY
| CCESLPCR KPCPAPLA

I KVC D TVSCNKEC
LYVC DSEVLCAATA

N erntom| GD Pp
B Phos@ ucoMi . LI

VGALLLDNCCGVNAEY
FKAVLFDLCCGVITCT

LECCPP- - - [KRSPEPI L
AEVAAS-- - [KRAPCI| Fl

ANVC|DTVECI I AC
| CLEIDISCACI CAI

[ Hel oAci dDehal . PspYL

| KCIAFDLYCTLFCV

LSVCPVCVY KPCNRVYE

LFVS SNAVCATCA|

N er nbontEpoxHyd. Hs
Enol asePhos. Ko

LRAAVFDLCGVLALP
I RAIVTDI ECT]TSCI

I ESCCVCENVIKREPCI YK
FC-- TLVGAKREAGSYF

VFLC|D/I CANLKPA
LFLS|D|I FCELCAA

Active site of haloacid dehalogenase
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QuATPase. B¢
QuATPase. H
Ca+ATPase. A
ut.N

10

*
LDTVVFDKTGTLTEG
VKVVVIFD KTGT|I THG

ATTI GSDKTGTLTTN
KVAI VIFD SAGTILVKI

151
*
VI AGVLPDGK AEAI KHL
VFAEVLPSHK VAKVKQL

VMARSSPMD|K HTLVRLL
E-- - AHQEL/K RDLI RNL

176
*
AMVG|C|GI NDAPAL
AMVG|C|GI NDSPAL

AVTG|C|GTNDAPAL
| MVG|C|GANDVPAM

[ ProsSer Pros. H

ADAVCED VDSTVI RE

TAE- SGGKGK VI KLLKE

| M GC GATDMEAC]|

2-D06-Fhhos. &
O-Gy-3-Phos. &
Phosphon. Pa
Phosphon. &
Phosphon. Bc

Phos@ ycol Phos. Rs
N ernbom| G0 Pp
B-Phos@ ucoMt.. LI

Hal oAci dDehal . PspYL

N er nbonEpoxHyd. B

VDLCLFD LDGT|I VST
| NAALFD VDGT|I 1 | S
LQAAI|LD WAGT|VVDF
[ HAVI|LD WAGT|TVDF
| EAVI|FD WAGT[TVDY
MPGVVIFD LDGT|LVHS
VQALLILD MDGVIMAEV
FKAVLIFD LDGVI TDT
| KGI AFD LYGT|LFDV
LRAAVFD LDGVLLALP

| TGFDVKNG|K RDPEGY S
| TANDVKQG|K RHPEPYL
ATDEV- PNG|k RWPAQAL
ATDDLAAGG|R RGPWVAL
TPDDV- PAG|R RYPWMSY
| GGESLPQR|K RDPAPLA
LEDCPP- - - [K RSPEPI L
AEVAAS- - - |K RAPDI FI

LSVDPVQVY|K ADNRVYE
| ESCQVGMV|K BEPQI YK

VVFE[C[APVGI KAG
VVFE|C|APAGI AAG
VKVDIC| TWPGI LEG
VKVDIC|AAPGI SEG
| KVG|C|TVSDMKEG
LYVG|C|SEVDAATA
AMVGIC|TVDDI | AG
| GLE|C/SQAGI QAl
LFVS|S|NAWDAT GA
VELDIC!I GANLKPA

[Enol asePhos. Ko

| RAIVTD I EGTTSDI

FD- - TLVGAKREAQSYR

LFLSC | HQELDAA]

10

151

* *
LDTVVEC KTGTLTEG VI AGVLPDGKAEAI KHL
VKVVVFLC KTGTI THG ~ VFAEVLPSHKVAKVKQL
ATTI GSCKTGTLTTN  VMARSSPMDKHTLVRLL

KVAI VIFC SAGTLL VKI

E- - - AHQEL K RDL I RNL

ADAVGFL VDSTVI RE  TAE- SGGKGK VI KLLKE
VDLCLFLC LDGT|I VST | TGFDVKNGK ADPEGYS
INAALFC VDGTI I'1'S | TANDVKQGK RHPEPYL
LQAAILL WAGTVVDF  ATDEV- PNGRRWPAQAL
I HAVIILC WAGTTVDF ~ ATDDLAAGGR RGPWMAL
| EAVI|FC WAGTTVDY ~ TPDDV- PAGRRYPWMSY
MPGVVFLC LDGTLVHS | GGESLPQRK RDPAPLA
VQALLLC MDGVIMAEV ~ LEDCPP- - - KPSPEPI L
FKAVLFCLDGVI TDT ~ AEVAAS- -- KRAPDI FI
Hol oci drehal . PspYL | KGI AFC LYGTLFDV ~ LSVDPVQVY K RDNRVYE
NernbongpoxHyd. s LRAAVFC LDGVLALP 1 ESCQVGMV K REPQI YK
Enol asePhos. ko I RAI'TC | EGTTSDI FD-- TLVGAKREAQSYR

176

*
AMVG|D GI NDAPAL
AMVG|D GI NDSPAL
AVTG|D GTNDAPAL
| MVG|D GANDVPAN
| MI G|D GATDMEAC
VVFE D APVGI KAG
VVFE D APAGI AAG
VKVD|D TWPGI LEG

AMVG|D TVDDI | AG
| GLE|D SQAGI QAI

D10 O H\H

» » 0-p-CHCHD ’—Dm—g—o' CH=CH =P =P

-

HOH 'A‘«
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ignment

le al

Ip
Jolg
ic receptors
Prostaglandin receptors

It
in

ips

h
Fungal pheromone receptors

format
Muscar

ions

c

ips
ips

te relat

Intermed
Distant relat

h

SSSWI HSPSDAGL PP GTVTHF GS

h

=
S
o)
=
%
S
=

ions

: GPCRs
ions
ia

MTLHNNSTTSPLFPNI

Issues
Muscarinic Receptor Sub-types (45-60% identical)

- Example
Close relat

®EERE

« What question are you asking when you create
a multiple alignment?
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Prostaglandin Receptors: Family 1 (23-40% identical)

TMDl

Pros. E2 MSPCGLNLSLADEAATCATPRLPNTSVVLPTGDNGT|SPIALPI FSMTL| A LALIAL|L
Pros. F2 MSMNSSKQPVSPAAGLI ANTTC- - - QTENRL FFSI | FMTV| L| LAILLAI LM
Throm A2 MWPNGTSLGACFRPVNI TLQERRAI A WFAASFCAL| L LILAL[SV|L|A
Pros.12 MMASDGHPGPPSVTPGSPLSAGGREWQGMAGSCWNI TYVQDSVGPATSTL MFVA|GVV GLALIGI|LIG

Pros. E2 VAS) HVIPEALMLRL

Pros. F2 o) LiL|A VF
Throm A2 AlLIL C
Pros. 12

TMD4

Pros. E2 LIHAARVSVARERLAHAVLAA LAvAL|L
Pros. F2 IFHSTKITSKHiKMI

SGVCMFAVFVA
WATVMGLVWVAIAIGAL GL|
PSI YAFCCLFCS

Throm A2 FSRPT- ATSRRA|
Pros. 12 YLYAQLDGPRCIA

TMD:
Pros. E2 WCF|l SLGPRGGWRQALLAGL] GLAALLAALYV TLSGLA|L|L ARWRRRRSRRF KTAGPDDRRR
L

Pros. F2 V\CFYNTEHIEDWEDRFYL
Throm A2 V\CFLTLG--TQRGD\/VF GSASVGLSLL,

L GLLALGVSFS|
Pros.12 WCE[l RM- RSAQPGGCAF LAY s MALLVTSI FF|

AVTGVT|L|L VKFRSQQHRQ
TVSVAT|L|CIRVYHTREATQR

GSVTLS|LIYHMYRQQRRHH

Pros. E2 WGSRGPRLASASSASSI TSATATLRSSRGGGSARR\/HAH
Pros. F2
Throm A2
Pros. 12

Pros. E2 VVLAI GGWNSNSL QRPLEL, I
Pros. F2 NNSPVTCETT|L|F | vkldasrccovni s
Throm A2 TLLQTPPVMSFSIGIQLLRATEHQL|L - H- - PRFSSQLQAVS
Pros. 12 TQAI APDSREMGD CCLCARSVHGD

Fungal Pheromone Receptors from Several Species
(17-25% identical)

TMD1 TMDZ

_
- - .- MLDHI TPFngV FFDVLMPFA HI K| GLI NE'SIEMLGNDDNFMNSMVMWK» -
'l

MFSGKENVSFGVLCL|LIAIGC STSSCLIHLQA GVLLM FTGLVYNKGLNALAENN- ---SL
---MSYKSAI I GL LAV LLAPPLA HIS HTIK PAI IH LTMNTCIDAAllﬁéDDDFL»

TLTTIL YVIVIESAI NPYAE[T
TMD4

--MLPI GI FYQFYAYF L\/ SIPILYMQLRAR PCLL
ADLAPAY] ELS\/RLRHLLF PA NLAI ARKLES AST| Q\/RAGPGDHRRAVI | LLI ClL|G
LAWTLGCD|L SAI | ERTWQE l LCSALC\/LQRLE ASL QAHSTVWDRKRRLLI FGVG LGLPA

WDGKG D[l VI KLQVGAN SCAVTNI | YNLHTILL K- ADSVLPDLSS\NTKIVK L VI SILIF T|P|V
WMGY GLICD|l TSRI VTCSS| PA.AFTL\/LYLDT\/I R- @DHPLKRYENV\;» - -1 WHVCLSI LLIPIL

TMDS
L
123 | YTSLMI VNQSN Gl LEEA WPMMVFSMLW\/LLVAAPVI VVSLCSAVYSA AFR
LQI PMFFI VIQPY|RILNVI ENI|GC[SAPLYASVPALFI YHLWRL L V|S|LV A\/YAV VLR
MVMGFSYLLIQVF Gl ARYNGCIQNLLSPTWI TTVLYTMWML I WSIFVGAVYIAT|L
I' 1 MAMMVPLESN| VVI CMNIGCIY SSFYQTWYTLLFFYI PPCLL|SIFGGLFFVSRI V\/LV\NR
TMD6

QAV|LIASSAISITLNRSHYV|RL LLTAI DNBLFEI YVGTI AAQI - KSSI SIIE_IYGSV\;SSVHTGFN

TAALISSQHIS|GLISQKK Y F|RL A Al CE GQFYVI |1 QSL- QI GGLLIBIYTSWAEVHTNFNR]

RDIWIHCTN|S|GLINL TRFARLL|I CFIII’i NiFSVYTFVQDLQQVEGHV FKNTHSSTI WNTI

QQFF Q- RDI TSKRFL AAVFF PILTI FMVVAN- GKLQQFLIPIFNHEL VEAWHQE S|
TMD7

QY|PIASLVLMENTFQRNLI LA VCPLSAMI FF FGLGLE\/RQ YKEAFHRA»LLFCRLRKEPKA
FVIPVDTI AHSSLL--SLSIL FSLTPAALFVFFGLTEEAQSVYKARWKAL» I NLC- - - - SSKG

FDPIGRPI - YNI LYVLMS LI |F GSDALH SKFLRSI| KLGFVLDMWKRFI
YYIBITTKVGLND \/PPT\/L LMSLF STSGGWTEKVALI LWSLLVWLPFTK

SALQHVVADI EVVTFRS[HDTFDANTSTKIS[EKSDI DMRGSEAA-
KKQTDGRESL DL S[KFSVLVQRDTVI C-
DKNKEKRVGI LILINKL S|ISRKESRNPFSTDISENYlI STCTENYSPCVGTPI SQAHFYVDYRI PDDPRK
NTALGRHAQFKILIDCCKISII ESTMAGKTLDISITDFKEKC LVLERQWSKSSI PSDNSS




* What is the range of sequence divergence
among the sequences you plan to align?

E
E
D
E
D
E
N
E
D

OmMmzmomomm

EVYHNLKISL
EVYHALKISV|
EVYHHL KNV
EVYHSILKIGV|
RVIFTAAHRN

EVYHHLKISV| QDATINVGDEGGFAPN

NVGDEGGVIAPNI
NVGDEGGFAPNI

AKAGY T GK
EIKAGYTGK
KAGYKIGK
EIKAGYTGK

AKAGYTGK

QAIAVAET|IGHTIEVCTL[GVIDVAA- [EHLL TEPIGR]

QDATINVGDEGGFAPN

Kld!d@AESEFF--KDeK
S

Enols 1-8: all >60% identical to each other
Cpeps: <35% identical to Enols 1-8
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gram.pos LKAK--GMNTAYV
gramneg LS AK--GMNTNYV
eukaryote  TKKRYGASAGNYV
archea. LADR--DLPAGK
cpeps VERRFGPVP - -LSASS|g

[0 »n]4[n n]

grampos E[AIVKAAGIYELGKD I TLAM

gramneg DS I SKA[GlYKPGEDVF I AL FYNK-DQN I

eukaryote DIIKAAGH--DGKVKIGL FFKD-GKYD
A

[Mmmmm]

archea. E[AVETVADDFGFAISFGL LYDD - EADG
cpeps AAIVAET[GH - -TEVCTLGVDIVIAIAEHLLTEPGRYR

gram.pos YVLA --GE
gram.neg YDLK --GE

F TKQYPIV

Y
eukaryote L DF K PNSDKS KWL L

Y

H

EE

VE CGKYPIY
HSLIMKR|Y[P I Vv
AGKVEEYDLV
L AD[LJAHRF RMS

L
Y
Y
|

archea. --DDGVK--STEEQI
GDRVL.APDFAD

Enols: 37-62% identical to each other
Cpeps: 35-50% identical to Enols

How do you handle internal repeats?

7 /
/"/ | / //
/ ,

hyp. protein (S55115)

glyoxalase




VERSKREGI
PDVFSAHGV

- - SKGVSFKKKL SOGKMKH
- - SQGVKFKKRL SE[GRQK[D
- - AEGLPFKKKLTDGRMK[D
KYGDKI QWSPKFNQGRMKIN
NGGNVTREAGPVKGEG- - - - TTVI AFVED

General Issues in Multiple Alignment

» Computational complexity: a true multiple alignment
of N sequences would require an N-dimensional
matrix

No single "correct" multiple alignment can be
achieved except in trivial cases

Methods assume sequences are independent
rather than related by a phylogenetic tree in which
the "branches" may evolve at different rates and
with different positions being important to function
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Some Primary Algorithms for Multiple
Alignment

* Global alignment methods construct an alignment
throughout the length of the entire sequence

- Examples: Pileup, Clustal family, MSA

* Local alignment methods identify ordered series of
motifs, then aligns the intervening regions

- Examples: MACAW, PIMA

» 1D profile analysis

PILEUP (in GCG package*)

Calculates a diagonal matrix of N(n-1)/2
distances between all sequence pairs of N
sequences using Needleman-Wunsch algorithm

Constructs a guide tree (dendogram) from the
distance matrix to direct the order of addition of
subsequent pairwise alignments

Progressively aligns each cluster to the next most

related sequence or cluster of sequences,
adjusting the position of indels in all sequences

*Genetics Computer Group, Madison, WI (available through UCSF SACS)




Issues in the use of PILEUP

Fast, generates reasonable alignments

Current implementation in GCG handles up to 500
sequences

All alignments determined from pairwise alignments,
losing the information contained in the multiple
alignment for position-specific scoring

Overrepresentation of a subset of sequences to be

aligned may bias the inference of an ordered series
of motifs

ClustalWw*

From a family of programs using profile-based
progressive alignment

Access: http:/imwwz2.ebi.ac.uk/clustalw/

Permits user adjustment of many parameters for both
the pairwise and multiple alignment stages

Computes position-specific gap opening and
extension penalties as the alignment proceeds, e.g.,
varies parameters at different positions

*'W" stands for "weighting" the sequences to correct for unequal
sampling of sequences from different evolutionary distances
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Steps in a ClustalW alignment

1) Constructs a distance matrix of all N(N-2)/2
pairs using dynamic programming and
converts scores to distances

Generates a "guide tree" using the neighbor-
joining clustering algorithm of Saitou & Nei

Progressively aligns sequences in order of
decreasing similarity using variable
parameters and position-specific gap
penalties

The Bottom Line... *

» For multiple alignments of divergent proteins, e.g.,
<30% identity, none of these methods is very
satisfactory, suffering from 3 types of problems:

- Inability to produce a single multiple alignment from
correctly aligned subsets of the input sequences

Sensitivity to the number of sequences used

Sensitivity to the specific sequences used for multiple
alignment

*from the McClure paper listed in the lecture references
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1-D Profile analysis

Access: GCG package at SACS and at

http://www.sdsc.edu/projects/profile/new/help_main.html
(Gribskov, M., McLachlan, E.D., Eisenberg, D. (1987) PNAS USA, 84:4355-4358)

Information in a multiple alignment is represented
guantitatively as a table of position-specific symbol
comparison values and gap penalties

All information in the alignment is used

Implementations available for both for database
searching/sequence alignment

Hidden Markov Models

» Probability-based models for database searching,

multiple alignments, family generation (Pfam)

Software and tools sites:

http://hmmer.wustl.edu/
http://www.cse.ucsc.edu/research/compbio/HMM-apps/HMM-
applications.html
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Precomputed Multiple Alignments
of Protein Families

Pfam: http://pfam.wustl.edu/

— Multiple sequence alignments and HMMs for many protein
domains (3071 models as of 8/01)

Prodom: http://protein.toulouse.inra.fr/prodom.html

— Families generated automatically using PSI-BLAST with a
profile built from the seed alignments of Pfam

Systers: http://imww.dkfz-heidelberg.de/tbi/services/documentation/
systershelp.html
— Families clustered from SW-Prot/PIR using sequence
walks and aligned via ClustalW
MetaFam: http://metafam.ahc.umn.edu/

— Functional assignments and a tool for comparison of how
other family databases have made the classification

Finding and Analyzing Motifs
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Applications for Motif Analysis

Identification of very distant homologs
May point to important functional units in a protein
Can be used to "anchor" a multiple alignment

Databases of motifs can be used to develop other
informatics applications

Example: BLOCKS — Blosum

See: Bork, P. & Gibson, T. J. "Applying Motif and Profile Searches," in Methods in Enzymology
266: Computer methods for macromolecular sequence analysis, pp. 162-184
-

Prosite: Protein Family Signatures

http://tw.expasy.org/prosite/

Contains signatures for ~1500 families/domains

Can be accessed using description, accession
number, author, citation, full text search

Provides several useful tools allowing a user to
Scan a sequence against a PROSITE pattern
Scan a pattern generated by a user or from PROSITE
against the Swiss-Prot database
Scan a sequence against Profile databases, e.g.,
generalized profiles derived from multiple alignments
Many other specialized tools for motif/pattern generation and
analysis
Includes substantial meta data: experts on each system,
references, some statistical analysis




Meme & Mast

http://meme.sdsc.edu/meme/website/

* Meme: motif discovery tool
(Grundy, W. M. et al. 1997. CABIOS 13, 397)

— motifs represented as position-dependent letter-
probability matrices which describe the probability
of each possible letter at each position in the
pattern

— output can be converted to BLOCKS which can
then be converted to PSSMs (position-specific
scoring matrices)

* Mast: database searching tool using one or
more motifs as queries

— provides a match score for each sequence in the
database compared with each of the motifs in the
group of motifs provided represented as P-values

— provides probable order and spacing of
occurrences of the motifs in the sequence hits
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New Directions in Protein
Bioinformatics

Using Protein Informatics for Really
New Insight into Biology

e Comparative genomics

— Metabolic computing: EcoCyc & MetaCyc
http://ecocyc.org/ecocyc/index.html

— Clusters of Orthologous Groups (COGS)
http://www.ncbi.nlm.nih.gov/COG/

» Genetic circuits/Systems analysis
http://gobi.lbl.gov/~aparkin/index.html

* Protein-Protein Interactions

— Co-evolution

o1



Overview of E. coli metabolic systems

used with permission: Peter D. Karp (EcoCyc)

MetaCyc: Yeast Expression Data

used with permission: Peter D. Karp (EcoCyc)
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Nature 1999 Nov 4;402(6757):83

“A combined algorithm for genome-wide prediction of protein
function”

EDWARD M. MARCOTTE, MATTEO PELLEGRINI, MICHAEL J. THOMPSON,
TODD O. YEATES & DAVID EISENBERG

The availability of over 20 fully sequenced genomes has driven the development of
new methods to find protein function and interactions. Here we group proteins by
correlated evolution, correlated messenger RNA expression patterns and patterns
of domain fusion to determine functional relationships among the 6,217 proteins of
the yeast Saccharomyces cerevisiae. Using these methods, we discover over
93,000 pairwise links between functionally related yeast proteins. Links between
characterized and uncharacterized proteins allow a general function to be assigned
to more than half of the 2,557 previously uncharacterized yeast proteins. Examples
of functional links are given for a protein family of
previously unknown function, a protein whose human homologues are implicated in
colon cancer and the yeast prion Sup35.

-

A few important topics we didn’t even
mention

Mapping Sequence — Structure — Function
Structural superposition and 3D motif finding
The 3D genome project

Mapping the protein universe

Census studies (Gerstein)

Informatics for Proteomics
— post-translational modifications
— investigating protein machines
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See also:

e Nucleic Acids Res. 2002 30

— Description and useful information on 112
databases of interest to the
genomics/proteomics/bioinformatics communities




